
This is mostly based off of reading the slightly deobfuscated source code of the Pax WebApp and
Bluetooth packet logs.

All messages for controlling the device seem to go through a single service with UUID 8E320200-
64D2-11E6-BDF4-0800200C9A66 . Of interest is a read characteristic with UUID 8E320201-64D2-11E6-BDF4-
0800200C9A66 and write characteristic 8E320202-64D2-11E6-BDF4-0800200C9A66 ; there is also a
notification characteristic 8E320203-64D2-11E6-BDF4-0800200C9A66 . All commands are at least 16
bytes, but some commands can be longer. No padding is applied otherwise, as AES is used as if it
were a stream cipher here. The first byte of each message is some sort of type indicator, which
defines the format of the rest of the message's contents.

Blob data sent to/from the device appears to be AES-128 encrypted, in OFB mode. Every packet
that is sent/received resets the cipher state, however, so there's no actual cipher state needed to
be maintained between messages. The key for the cipher is derived during initialization from the
device serial. All messages have a 16 byte IV at the end that is used for the OFB cipher to decode
that message.

See this Python code for an example of how the encryption/decryption of packets is implemented.
There's also a more complete example on actually connecting to, and interfacing with a real
device.

Note: This encryption mechanism only applies to the Pax Era and the Pax 3; the new Pax Era Pro
has a more sophisticated protocol using nonces and AES-CTR mode, as well as a connection
handshake that is not covered here.

The notification characteristic is used relatively widely to indicate that new data is available. It
appears to always send a single byte, which is the first byte of the encrypted packet that is ready
to be sent.

Messages are read in blocks of at least 32 bytes (?). This is treated as two separate 16-byte values:
the first is a standard device to host attribute message, while the latter is the 16-byte IV to use for

Protocol Overview

Notifications

Message Structure

https://web-app.pax.com
https://gist.github.com/tristanseifert/48d07f77a97ceb214e4cabf55d117058
https://github.com/tristanseifert/pax-controller-test

cipher operations with this message. In all cases, the device key is used.

The key used for encryption is derived by concatenating the serial number string (this is always 8
characters long) to itself to form a 16 byte blob. It is then encrypted using ECB with a fixed key (F7
C8 66 C3 8F 78 75 30 86 29 3B D5 7D D3 25 40), and the first 16 bytes are stored as the key with
which all further messages are encrypted.

Regardless of contents of the rest of the message, the first byte of the message is always reserved
to indicate its type to allow correct decoding. Messages are simply packed structs; no special
encoding is required. All multibyte integers are stored in little endian byte order. See here for a list
of all message types.

Known message types are as follows:

Message type: ATTRIBUTE_BRIGHTNESS

Message type: ATTRIBUTE_LOCKED

Device Key Derivation

Message Types

LED brightness

struct {

 // 0 = 0%, 0x7F = 100%

 uint8_t brightness;

 // reserved (0) for Era

 uint8_t command;

};

Lock state

struct {

 // 0 = unlocked, 1 = locked

 uint8_t isLocked;

};

https://bookstack.trist.network/books/reverse-engineering/page/message-types

Message type: ATTRIBUTE_DEVICE_NAME

Message type: ATTRIBUTE_HEATER_SET_POINT

The temperature value is multiplied by 10; so 420°C is encoded as 4200 or 0x1068.

Message type: ATTRIBUTE_STATUS_UPDATE

This message, when sent to the device, triggers the transmission of all attribute values whose bits
are set. For example, to read both ATTRIBUTE_ACTUAL_TEMP (1) and ATTRIBUTE_CHARGE_STATUS (7)
simultaneously, the types value would be set to 0b10000001 .

Device name

struct {

 // length of the string, in bytes

 uint8_t length;

 // name string. this is NOT null terminated

 char name[];

};

Heater set point

struct {

 uint16_t temp;

};

Status update

struct {

 // bitmask of all attribute types to read out

 uint64_t types;

};

Revision #4
Created 4 October 2021 18:42:28
Updated 5 February 2022 23:46:14

