
A DIY programmable load, intended for power supply and battery testing

CPU Board

Peripheral Allocation
DMA Channel Allocations
Clocking
Hardware Errata

IO

Front Panel
Rear Panel
Front Panel Errata
Rear IO Errata

Load Driver

Hardware Errata
Adjustments

Remote Control

Protocol
Properties

Controller (New)

Overview
Peripherals
Hardware Errata

Programmable Load



The thing that runs the show

CPU Board



CPU Board

CAN0: Expansion
PA22 (TX), PA23 (RX)

SERCOM0: I2C, front panel/rear IO (through mux)
IOSET1 
PA8 (SDA, PAD0), PA9 (SCL, PAD1)

SERCOM2: I²C, analog board 
PA12 (SDA, PAD0), PA13 (SCL, PAD1)

SERCOM3: SPI, analog board
IOSET1
PA16 (SCK, PAD1), PA17 (MOSI, PAD0), PA18 (MISO, PAD2)
Chip select: PA19 (/EN)
Chip index: PB16, PB17

SERCOM4: SPI, front panel display
IOSET1
DIPO = 0x0
DOPO = 0x2
PB12 (MISO, PAD0), PB13 (SCK, PAD1), PB14 (/CS, PAD2), PB15 (MOSI, PAD3)

SERCOM5: SPI, NOR flash (bonus data)
IOSET6
DIPO = 0x3
DOPO = 0x0
PB2 (MOSI, PAD0), PB3 (SCK, PAD1), PB0 (/CS, PAD2), PB1 (MISO, PAD3)

TC3: Fan PWM
PA14: WO[0]

TC5: Beeper
PB10: WO[0]

EIC: External interrupt controller
PA15: /TRIGGER

EXTINT15
PA20: /ANALOG_IRQ

EXTINT4
PB08: ENCODER_B

EXTINT8
PB07: ENCODER_A

EXTINT7
PA10: /IO_I2C_IRQ

EXTINT10
XOSC1: 12MHz oscillator

XIN (PB22), XOUT (PB23)

Peripheral Allocation



Debug
SWCLK (PA30), SWDIO (PA31), SWO (PB30)

If desired, the driver communication interface can use CAN0 instead. It uses the same IO
pins as the I²C bus, and requires a CAN transceiver on the board.



CPU Board

DMAC should operate with dynamic, round-robin priority arbitration within a DMA priority level.
Priority levels listed are from 0 (highest) to 3 (lowest.)

Ch0: NOR flash SPI Tx empty (SERCOM5)
Priority: 2
Operate in SPI 32 bit data mode
Burst transfers

Ch1: NOR flash SPI Rx complete (SERCOM5)
Priority: 2
Operate in SPI 32 bit data mode
Burst transfers

Ch2: Display SPI Tx empty (SERCOM4)
Priority: 1
Operate in SPI 32 bit data mode
Burst transfers

DMA Channel Allocations



CPU Board

All clocks on the system are derived from one of the following clock inputs (oscillators and internal
generators:)

XOSC1: External 12MHz oscillator
Provides primary system clock reference

XOSC32K: External 32.768kHz oscillator
Runs in standby for RTC

DFLL48M: 48MHz
Used for USB reference clk
Uses external 32kHz osc for reference

DPLL0: 120MHz
CPU core clock

The above clock inputs are then synthesized into multiple clock sources, each used by a different
set of peripherals:

GCLK0: 120MHz
Sourced from DPLL0 / 1
General high speed clock

GCLK1: 48MHz 
Sourced from DFLL48M
Intended for USB use

GCLK3: 32.768kHz
Sourced from XOSC32K

Clocking
Clock Inputs

Crystals

FLLs

PLLs

Clock Sources



SERCOM slow clock
GCLK4: 12MHz

Sourced from XOSC1
General low speed clock

GCLK5: 32.768kHz
Sourced from ultra low power 32kHz osc

CPU core: GCLK0
Clock division factor: /1
Low power clock: /4
Backup domain: /8
High-speed: /1

Clock Consumers



CPU Board

This page lists some issues with CPU board hardware, as they are discovered, and some
workarounds.

/I2C_IRQ's external IRQ line conflicts with ENCODER_A
Move /I2C_IRQ from PA7 to PA10
Rework required: solder line from pin 11 (/IRQ) of U101 to middle of J302 (TXD)

Status LED (D302) footprint is wrong
The common (+) and red pins are swapped

Footprint for MMBT3904 transistors (Q101, Q301) are slightly too small
The two pads side is slightly too much spacing between pads
They are still solderable, it just looks ugly

NOR Flash (U303) is actually 4Mbit
This is the part I actually had lol

Power LED driver doesn't work
The weird trick with the two resistors doesn't seem to work… like, at all
We'll have to revisit how this is controlled (external logic? sacrificing another pin?)
Footprint notes

Copper size on the pads could be increased
For mechanical retention of the switch, nudge the outer (switch) pads in by a
small amount

Switched front/rear I²C bus (from mux to MCU) is missing pull ups
Need to insert these between the mux (U101) and microcontroller

Hardware Errata

Rev 1



Rework required: Bodge in a pair of 2k2 resistors to +3V3

https://wiki.trist.network/uploads/images/gallery/2022-03/GvJv1sbX1ImjcXRK-image-1648709305027.jpeg


Front and rear panels

IO



IO

The front panel features a few buttons, indicators, and a rotary encoder.

Note that the actual front panel board only covers the right third of the actual front panel: the area
with the push buttons, indicators, and rotary encoder. It's mounted to the case via four 8mm
standoffs with M2.5 thread, and should be screwed in with washers to distribute the force of button
pushes more evenly across the board, rather than stressing the screw holes.

There are two primary connections to the rest of the world on the front panel: the external voltage
sense input, and the supply input.

Supply input is made through a pair of binding posts (Cal Test CT4231) supporting up to 36A per
post. The positive and negative terminals follow the standard red/black convention, and are
internally connected to the driver board via thick wiring. The binding posts should use some sort of
screw mount for the wire, which itself should have crimped ferrules or other terminals on the end

Front Panel

Overview

Connectors

External voltage sense may or may not be used for measurement, depending on software
control.

https://wiki.trist.network/uploads/images/gallery/2022-03/EL93mLo1qQbhIc01-image-1647139758326.png
https://app.caltestelectronics.com/product-list/product-page/view/CT4231/


to attach conveniently to the wire.

External sense voltage is delivered through a pair of banana jacks (Cal Test CT2240.) These do not
need to carry much current (if any) and are on a yellow and black connector (for positive and
negative, respectively) there. These jacks are solder mount, which should be soldered to a
(possibly shielded) twisted pair wire, which in turn connects to the driver board's external voltage
sense input.

The bulk of the buttons on the front panel consists of illuminated tactile switches (Omron B3W-9
type), which are further subdivided into the mode selectors (column of four switches, each with a
single yellow LED) and the input on/off button (one switch, with dual red/green LEDs.)

Additionally, the button inside the rotary encoder (triggered when the knob is depressed) is
available as a switch for selecting items in menu. It works in conjunction with the circular menu
button (C&K D6R type) to browse menus.

On the front panel, all buttons are connected to a XRA1203 I²C IO expander. It features an interrupt
output, which is connected to the controller board so buttons needn't be polled in software.

Lastly, there is a power button in the lower left corner; this switch actually exists on the controller
board, rather than the front panel. It's an illuminated, right angle tactile switch (CTS 228A type)
with the appropriate power icon (the little circle with the dash on it) printed on its cap. The board is
set up to support bi-color illuminated switches so that there can be a standby/active type lighting
situation. 

Indicators are LEDs, which are brought out to the front panel via light pipes. These indicators
consist of one RGB LED (status,) one amber LED (trigger,) and three red LEDs (overheat,
overcurrent, error.) Each LED can be individually controlled, and its brightness (current) adjusted.

Each of the buttons, with the exception of the rotary encoder itself, contains at least one LED.
These LEDs are available to drive the same way indicators are, via the LED controller.

All LEDs are connected to a PCA9955B constant current LED driver. 

Buttons

Indicators

Display

https://app.caltestelectronics.com/product-list/product-page/view/CT2240/
https://components.omron.com/us-en/products/switches/B3W-9
https://www.ckswitches.com/products/switches/product-details/Keyswitch/D6/D6RLGN%20F1%20LFS/
https://www.maxlinear.com/product/interface/bridges/gpio-expanders/i2c-gpio-expanders/xra1203
https://www.ctscorp.com/wp-content/uploads/228A.pdf
https://www.nxp.com/products/power-management/lighting-driver-and-controller-ics/ic-led-controllers/16-channel-fm-plus-ic-bus-57-ma-20-v-constant-current-led-driver:PCA9955BTW


Any SPI display is compatible with the front panel, though it is specifically designed for the ER-
OLEDM032-1Y module (or any other compatible modules with other colors; do note that the display
may need to be modified for 4 wire SPI operation, by soldering some resistors and jumpers) and its
pinout.

The display mounts on 6mm long M2.5 studs, with nylon stand-offs to get the correct distance
between the front panel and the display surface. Then, a washer and nut are attached to the end,
to fasten the display securely.

On the front panel board, there is also an I2C EEPROM (AT24CS32 type) that contains the front
panel’s exact configuration, including the switches available, mapping of switch inputs and LED
outputs, and LED drive characteristics such as maximum current.

Currently, there’s just one revision of front panel, pictured above. It works, but it needs some minor
rework:

Menu button too small: needs +.4mm to diameter
Edge machining on display cutout: A bevel would be more attractive

Regardless of the type of display, it should not consume more than roughly 350mA of
current. The main board has a 500mA polyfuse for the display.

Miscellaneous

Revisions

https://www.buydisplay.com/yellow-3-2-inch-arduino-raspberry-pi-oled-display-module-256x64-spi
https://www.buydisplay.com/yellow-3-2-inch-arduino-raspberry-pi-oled-display-module-256x64-spi


IO

On the rear of the device are a few auxiliary connections, including AC power input,
communications (Ethernet, USB) and an external trigger input.

Rear panel, as viewed from front (inside)

A cutout is provided for an IEC mains filter/input module with switch and fuse – in this case, the
cutout is sized to fit the Astrodyne TDI 084 series, specifically the 084.00301.00 with a 3A fuse.

Output from the filter (usually provided on spade terminals, or directly on wires) should then go via
(sufficiently insulated) wires to a connector (CUI Devices TBP02P1W-381-03 or similar 3.81mm
pluggable terminal block) to the driver board, which has a power module (CUI PSK-20D-12,
Meanwell IRM-20-12, or similar) to produce the 12V from mains input.

Alternatively, this power module can be skipped in favor of an externally mounted power supply, in
which case the mains input can be directly wired there; though take care to ensure that the case is
still grounded. (The driver board has a 3.96mm JST-VH B2P-VH connector as a +12V input to
accommodate external power supplies in place of a soldered power module, if that is desired
instead.)

Rear Panel

Power

It's very important that the IEC input module has a fuse built in; the only protection, if using
the driver board's AC/DC module is a varistor to arrest surges.

https://wiki.trist.network/uploads/images/gallery/2022-03/oUjVicTsUHWcX8G9-image-1647200673543.png
https://store.astrodynetdi.com/filtered-power-entry-modules-with-double-fuse-holder-and-switch084-00301-00.html
https://www.cuidevices.com/product/interconnect/connectors/terminal-blocks/tbp02p1w-381-series
https://www.cui.com/product/internal-ac-dc-power-supplies/board-mount/psk-20d-series/psk-20d-12
https://www.meanwellusa.com/webapp/product/search.aspx?prod=IRM-20


If an external supply is used, it should be capable of providing at least 1.6A at 12V with reasonably
low noise.

Ethernet and USB connectors are mounted on a small auxiliary circuit board, which mounts by
means of screws on two 12mm M2.5 standoffs, and assumes a panel thickness of ~1.5mm. It
serves as not much more than a simple breakout, converting from the 20 pin, 1.27mm ribbon cable
coming from the controller board to these connectors.

On the USB connector, there exists basic transient filtering (via a TVS) and an I²C ADC to sense the
VBus voltage. (There's no reason for a full blown ADC, but it was cheaper than an IO expander for
just a single line.)

The Ethernet connector (Abracon ARJC07-111071A) is a vertical MagJack type, with the required
magnetics integrated into the connector; therefore, the Ethernet side is not much more than a
straight through connection, with some current limiting resistors for the connector's activity
indicator LEDs.

Lastly, the board features an EEPROM (AT24CS32 type) for identification by software.

The last connector, near the bottom of the panel, is a cutout for a board mount BNC connector (TE
1-1634624-0)
 on the driver board. This connector is used as an external trigger for various custom modes; it is
relatively low impedance and drives directly an optoisolator.

No special treatment is required for the connector beyond the cutout, though it may feature a nut
or other retention mechanism on the other side of the panel.

For cooling purposes, the remaining area on the right side of the panel has a cutout for a 60mm
fan. This fan is automatically controlled by the processor board. It should be set up to suck air out
of the chassis, to encourage more intake of fresh air at the front. This works in conjunction with the
smaller fan on the driver board's heatsink.

IO Board

External Trigger

Miscellaneous

https://abracon.com/Magnetics/lan/ARJC07-111071A.pdf
https://www.te.com/usa-en/product-1-1634624-0.html
https://www.te.com/usa-en/product-1-1634624-0.html


IO

Mode/load switches footprints need soldermask pulled back from pads
The pads are covered by soldermask. This is bad

Front Panel Errata
Rev 1



IO

Copper rings around USB connector pads should be larger
Retention holes for Ethernet jack should be slightly smaller (to accommodate push-in
expansion action for mechanical stability)

Rear IO Errata
Rev 1



Separate board to actually do the load operations, with MOSFETs or whatever else

Load Driver



Load Driver

This page lists some issues with the hardware.

Holes for current sense resistors should be slightly larger
Datasheet specifies 1.5mm ±0.12mm

Increase spacing between heatsink and MOSFET/resistor slightly
Right now, the legs need to be bent at a bit of an angle, which makes fitting
everything a huge pain in the ass

Zero offset resistor (R307, ???) is too large
4M7 is too large and doesn’t let us trim out the entire DC offset (~4.5mV)
1M was also too large (~3.5mV)
200k works (able to trim to ~1µV remaining offset)

This is probably too low, maybe something like 330k or 500k is better
The trimming range is quite small

MOSFET gate drive voltage too low
VGs, with the current configuration can only drive to max +3V3. This is not sufficient
to turn on the MOSFETs selected (IXTH80N075L2) with a VGs(th) of 4.5V max
May be salvageable by rework (op-amp powered from 5V instead) and selecting a
different MOSFET
Future work

Select a MOSFET driver opamp that can be powered from ±12V
Update power section to generate isolated 12V (replace PS201 with PDSE1-
S12-S12-S)
Generate 5V locally (switching supply off 12V)

I²C isolator (U203, ADuM1250) has the output SCL/SDA swapped
The I²C bus is swapped for all devices downstream of the EEPROM

Hardware Errata

Rev 2

Rev 1



Load Driver

The driver boards need to have done to work.

Trimmers: RV301, RV302

This adjustment controls the zero offset of the current sense amps. Connect the load to a (current
limited) power supply, with a current meter in line. Ensure the current DACs are outputting an all
zeros code, then adjust each of the trimmers so that the load is not drawing any current.

Trimmers: RV501

Changes the length of external trigger pulses. Connect a signal generator to the external trigger
input, and an oscilloscope to TP501. Adjust until the pulse is approximately 50ms in length.

Trimmers: RV601

Controls directly the input voltage offset differential amp, and is used to trim any residual offset in
the voltage. Select external voltage sense input with the relay, then short the input sense terminals
to each other. Adjust until the voltage ADC reads an all zeros code.

Adjustments

Rev 1
Current driver zero offset

External trigger pulse shaper

Voltage sense offset



Information about the remote control interface of the load, including the underlying protocol, and
differences between supported transports.

Remote Control



Remote Control

This page describes the native communications protocol with the device. It is binary based, with a
small header, and no other requirements on the data.

By convention, most (if not all) endpoints accept and provide data that is CBOR encoded.

All packets have a simple four byte header that precedes the payload, regardless of the underlying
transport:

1 byte: Message type
Indicates the "endpoint" inside the protocol handler that should receive this message

1 byte: Tag
Can be used to differentiate multiple outstanding requests and their replies

2 bytes: Length
Indicates the number of bytes of payload data that follow

Note that all multi-byte values in the header are sent in big endian (network) byte order.

Below are all currently implemented message types/endpoints:

Number Name Description

0x01 Property Request Get/set various properties on the
device. See Properties for more info.

This same protocol can be carried over a variety of physical transports. The format of messages,
including the packet header, are the same; however, the transport may add additional headers and
padding, if needed. At this time, the following transports are supported:

Protocol

Header

Message Types

Transports

USB

https://cbor.io
https://wiki.trist.network/books/programmable-load/page/properties


The first interface exposed by the device is a vendor specific interface, which consists of two bulk
endpoints (one in and one out) used to transmit and receive the packets and their responses; as
well as an interrupt endpoint, used to notify the host that the state of the device changed.

In this case, the device does not send unsolicited data. No additional headers are added to
payloads sent over the endpoints, beyond the above packet headers.



Remote Control

This page describes the "property request" mechanism, as well as the message format used to
interact with it.

All messages on this endpoint are CBOR encoded.

Requests are maps, with one or more of the following keys:

get: An array of property IDs to read
set: A map containing properties to set. Keys in the map correspond to property IDs.

The device responds with a map, which contains the following keys. Which keys are included in the
response depends on the request:

get: A map (keyed by property IDs) containing the value of all requested properties.
Unsupported/unknown properties are returned as undefined .
set: An array containing the property IDs of all properties that were set. Any properties
that were requested to be set, but are not supported (or read-only) will not be included.

Below are all currently supported properties, including their IDs and value types:

ID Name R/W Type Description

0x01 HwSerial R string Serial number of the
hardware

0x02 HwVersion R string Version information
(such as revision) for
the device

Properties

Message Format

Requests

Replies

Supported Properties



0x03 HwInventory R array Information about all
peripherals
connected to the
load. The array
contains maps, which
will have the
following keys:

type:
Peripheral
type; may
be one of
["load",
"hmi" or
"io"]
sn: Serial
number
(string;
optional)
driver:
Driver id
(blob;
optional)

0x04 SwVersion R string Current software
version (including
build number)

0x05 MaxVoltage R int Maximum allowable
input voltage (mV)

0x06 MaxCurrent R int Maximum allowable
input current (mA)

0x07 DefaultVSense RW int Voltage sense source
on power-on:

-1 = state
at last
power off
0 =
internal
1 =
external

This setting is
persistent.



0x08 DefaultMode RW int Operation mode on
power-on:

-1 =
mode at
last power
off
0 =
Constant
current
1 =
Constant
voltage
2 =
Constant
wattage 

This setting is
persistent.

0x09 DefaultCurrent RW int Current limit value
(for constant current
mode) to apply on
power on, in mA. -1 =
last user specified
value at power off

0x0A DefaultVoltage RW int Voltage limit value
(for constant voltage
mode) to apply at
power on, in mV. -1 =
last user specified
value at power off

0x0B DefaultWattage RW int Wattage (for constant
wattage mode) to
apply at power on, in
mW. -1 = last user
specified value at
power off



A new and improved controller for the programmable load, based around an STM32MP1 dual
Cortex A7/M4F.

Controller (New)



Controller (New)

This is a new controller board for the programmable load, designed around the STM32MP1
microprocessor, which contains a Cortex A7 core (suitable for running a full-blown operating
system) as well as a Cortex M4 core (suited to running real time sensitive tasks with an RTOS) on
the same package. To avoid needing to deal with BGA packages, high speed DDR routing, and a
bunch of power rails, a MYIR MYC-YA15X SoM is used.

As with the previous designs of the load, it will feature an USB device mode connection, as well as
standard 100Mbps Ethernet with a standard IPv4 and IPv6 stack. Additionally, a CAN expansion bus
is provided to connect multiple units together, and possibly to other, larger loads down the road.

Internally, the controller provides both a high-speed SPI for the analog interface (to allow fast
control of ADCs and DACs by software) as well as a low-speed I²C interface, which is primarily
intended for identification of the analog board, and some auxiliary control tasks like thermal
management and input selection.

Most of the user interface remains the same from the previous iteration, including the button and
indicator layout on the front panel, barring some minor spacing changes.

However, the small greyscale OLED is replaced by a 800x480 4” capacitive touch LCD. This is
driven directly by the LCD interface controller in the Cortex A7 side of the microcontroller, and
provides an user interface that allows interaction by a hybrid means of the front panel buttons and
touch controls. 

The switching AC/DC supply in earlier versions is replaced by a regular mains transformer, a
standard rectifier and smoothing capacitors, followed by several DC/DC modules to generate the
required voltages. Eliminating the AC/DC switching supply reduces the noise in the system, and
provides greater isolation from mains.

Overview

Connectivity

User Interface

Power

https://www.st.com/en/microcontrollers-microprocessors/stm32mp1-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32mp1-series.html
http://www.myirtech.com/list.asp?id=658


Controller (New)

Below are listed the general peripherals used by the controller. These are selected so that they
consist of the peripherals that are available on pins broken out by the MYIR STM32MP1 SoM.

These peripherals are reserved for the exclusive use of the Cortex A7 side. This runs a full OS,
handles networking, expansion connectivity, the user interface, and so forth.

I2C2: Front panel / local I²C bus
Through PCA9543A bus mux

SPI3: Front panel display, CAN controller (through /CS-based mux)
Front panel display controller
On-board CAN controller

UART4: Kernel TTY
ETH: Ethernet MAC, in 100Mbps mode

PHY connected via RMII
STM32 generates 50MHz refclk for PHY

USBH/USBOTG: Support for one USB host, one OTG device
Device exposes standard load interface
Support for boot over USB

PB9: Front panel reset
PC0: Ethernet PHY reset
PC12: I2C2 mux reset
PF6: Expansion connector power enable
PF7: Expansion CAN termination
PF9: Expansion CAN controller reset
PZ6: Status LED (bicolor, 0/1/Z mode)

PD2: I2C2 mux irq
PA5: Ethernet PHY irq

Peripherals

Cortex A7

Communications

GPIOs

External IRQs



PC12: SPI3 irq

These peripherals are reserved for the exclusive use of the Cortex M4 core, which runs the real-
time control loop and a few other tasks better suited to an RTOS environment.

I2C1: Analog interface (low speed)
Used for IDPROM, fan controller, temperature sensing, etc.
Runs at ~400kbps

SPI5: Analog interface (high speed) 
Runs at up to 20MHz
Up to 7 devices (3-bit select code)

UART5: Debug console

TIM2: Magnetic transducer (beeper)
PA3, Ch4 PWM output

TIM4: Front LCD backlight
PB7, Ch2 PWM output

PA12: SPI select bit 1
PD8: Analog interface reset
PD13: Status LED (green)
PE11: SPI select bit 2
PF8: Status LED (blue)
PG5: Status LED (red)

PG3: Analog interface
PA4: Front panel encoder “A”
PA5: Front panel encoder “B”
PG8: External trigger
PF10: Zero crossing detect

Cortex M4

Communications

Timers

GPIOs

External IRQs



Controller (New)

This page documents some issues with the hardware.

Footprint for RTC backup battery (BT301) is backwards
The + terminal of the battery connects to the GND node, and vice versa.
Resolution: Populate battery in reverse

RTC charger should be powered by system +3V3 rail
It's powered by the SoC's own 3V3 rail now, which toggles off during reboot
Use instead the system +3V3 rail

Incorrect power-on reset behavior
There is no reset pulse generated on boot-up (by an external reset generator…
which we don't have. lol) which causes spurious boot failures

So, we should add a supervisor for the reset line
Generate a power on reset pulse of ~1 sec with the +5V rail

We may need to shorten the reset delay on the +3V3 voltage supervisor line
Alternatively – directly use the +3V3 input to switch it

This was caused by the RTC charger coming off the +3V3 SoM rail. Using the system
+3V3 rail resolves this

Pulse shaper stuff
Adjusting it sucks as TP501 is on the analog side of the  filter, rather than the nice,
pristine digital from U507

Fix: Add another test point at the output
Alternatively, we can probably work around this in software (with a special
calibration UI?)

Possibly expand the adjustment headroom
Front panel connection

The pinout of the connector is mirrored (left to right) with respect to the front panel
when assembled
We can probably leave this (using a longer flex to compensate) or fix it on either the
front panel or controller board revision (probably the controller board)

Rear case fan (M501) connector sucks
The location is awful (it will be right underneath the analog board)
Relocate it elsewhere - but where?

Where VBUS LED is chilling
In the back by the expansion connector

We'd need to relocate some of the expansion IO stuff, like the termination
and so forth

Hardware Errata

Rev 3



Power supply section sucks to assemble
Is there anything we can do to make this less awful
Also, add an easier way to power the board off DC

Spring/screw terminal near power supply area


