
Information about the remote control interface of the load, including the underlying protocol, and
differences between supported transports.

Protocol
Properties

Remote Control



This page describes the native communications protocol with the device. It is binary based, with a
small header, and no other requirements on the data.

By convention, most (if not all) endpoints accept and provide data that is CBOR encoded.

All packets have a simple four byte header that precedes the payload, regardless of the underlying
transport:

1 byte: Message type
Indicates the "endpoint" inside the protocol handler that should receive this message

1 byte: Tag
Can be used to differentiate multiple outstanding requests and their replies

2 bytes: Length
Indicates the number of bytes of payload data that follow

Note that all multi-byte values in the header are sent in big endian (network) byte order.

Below are all currently implemented message types/endpoints:

Number Name Description

0x01 Property Request Get/set various properties on the
device. See Properties for more info.

This same protocol can be carried over a variety of physical transports. The format of messages,
including the packet header, are the same; however, the transport may add additional headers and
padding, if needed. At this time, the following transports are supported:

Protocol

Header

Message Types

Transports

USB

https://cbor.io
https://wiki.trist.network/books/programmable-load/page/properties


The first interface exposed by the device is a vendor specific interface, which consists of two bulk
endpoints (one in and one out) used to transmit and receive the packets and their responses; as
well as an interrupt endpoint, used to notify the host that the state of the device changed.

In this case, the device does not send unsolicited data. No additional headers are added to
payloads sent over the endpoints, beyond the above packet headers.



This page describes the "property request" mechanism, as well as the message format used to
interact with it.

All messages on this endpoint are CBOR encoded.

Requests are maps, with one or more of the following keys:

get: An array of property IDs to read
set: A map containing properties to set. Keys in the map correspond to property IDs.

The device responds with a map, which contains the following keys. Which keys are included in the
response depends on the request:

get: A map (keyed by property IDs) containing the value of all requested properties.
Unsupported/unknown properties are returned as undefined .
set: An array containing the property IDs of all properties that were set. Any properties
that were requested to be set, but are not supported (or read-only) will not be included.

Below are all currently supported properties, including their IDs and value types:

ID Name R/W Type Description

0x01 HwSerial R string Serial number of the
hardware

0x02 HwVersion R string Version information
(such as revision) for
the device

Properties

Message Format

Requests

Replies

Supported Properties



0x03 HwInventory R array Information about all
peripherals
connected to the
load. The array
contains maps, which
will have the
following keys:

type:
Peripheral
type; may
be one of
["load",
"hmi" or
"io"]
sn: Serial
number
(string;
optional)
driver:
Driver id
(blob;
optional)

0x04 SwVersion R string Current software
version (including
build number)

0x05 MaxVoltage R int Maximum allowable
input voltage (mV)

0x06 MaxCurrent R int Maximum allowable
input current (mA)

0x07 DefaultVSense RW int Voltage sense source
on power-on:

-1 = state
at last
power off
0 =
internal
1 =
external

This setting is
persistent.



0x08 DefaultMode RW int Operation mode on
power-on:

-1 =
mode at
last power
off
0 =
Constant
current
1 =
Constant
voltage
2 =
Constant
wattage 

This setting is
persistent.

0x09 DefaultCurrent RW int Current limit value
(for constant current
mode) to apply on
power on, in mA. -1 =
last user specified
value at power off

0x0A DefaultVoltage RW int Voltage limit value
(for constant voltage
mode) to apply at
power on, in mV. -1 =
last user specified
value at power off

0x0B DefaultWattage RW int Wattage (for constant
wattage mode) to
apply at power on, in
mW. -1 = last user
specified value at
power off


