
Notes on the first revision coordinator hardware and software

Hardware Errata
Firmware Notes
Host Firmware Notes

Coordinator Rev1

Collection of some notes on the rev1 coordinator hardware

Combine 100nF capacitors on BoM
C804 (100V) and others (logic level) can be served by the same item

0402 size for bottom indicator LEDs is ass
They ought to be larger, 0603 or 0805
Alternatively, use reverse-mount LEDs that are easier to work with (and can be
reflowed)

Ethernet PHY is not recognized
Appears to just be a soldering issue with the pads on the SoM not making proper
connection
Next rev should have larger SoM pads with more cream?

Fix footprint for C802, C803
They are actually 3225, not 3216

Wifi seems to be busted
This likely is a software issue; the module initializes correctly and is recognized on
boot (with the appropriate drivers being loaded)

[19.308901] mwifiex_sdio mmc0:0001:1: info: FW download over, size 616840

bytes

[19.834461] mwifiex_sdio mmc0:0001:1: WLAN FW is active

[20.254606] mwifiex_sdio mmc0:0001:1: info: MWIFIEX VERSION: mwifiex 1.0

(15.68.7.p189)

[20.261290] mwifiex_sdio mmc0:0001:1: driver_version = mwifiex 1.0

(15.68.7.p189)

[32.322732] fixed-3v3: disabling

[32.324575] vdd_sd: disabling

[317.632606] mwifiex_sdio mmc0:0001:1: Firmware wakeup failed

[317.637160] mwifiex_sdio mmc0:0001:1: PREP_CMD: FW in reset state

[317.653566] mwifiex_sdio mmc0:0001:1: info: shutdown mwifiex...

[317.672972] mwifiex_sdio mmc0:0001:1: PREP_CMD: card is removed

[317.775670] mwifiex_sdio mmc0:0001:1: WLAN FW already running! Skip FW dnld

[317.781226] mwifiex_sdio mmc0:0001:1: WLAN FW is active

[327.952520] mwifiex_sdio mmc0:0001:1: mwifiex_cmd_timeout_func: Timeout cmd

id = 0xa9, act = 0x0

[327.959898] mwifiex_sdio mmc0:0001:1: num_data_h2c_failure = 0

Hardware Errata

Assembly

Operation

[327.965752] mwifiex_sdio mmc0:0001:1: num_cmd_h2c_failure = 0

[327.971442] mwifiex_sdio mmc0:0001:1: is_cmd_timedout = 1

[327.976846] mwifiex_sdio mmc0:0001:1: num_tx_timeout = 0

[327.982131] mwifiex_sdio mmc0:0001:1: last_cmd_index = 0

[327.987447] mwifiex_sdio mmc0:0001:1: last_cmd_id: a9 00 28 00 16 00 cd 00 1e

00

[327.994853] mwifiex_sdio mmc0:0001:1: last_cmd_act: 00 00 13 00 01 00 01 00

00 00

[328.002295] mwifiex_sdio mmc0:0001:1: last_cmd_resp_index = 4

[328.008046] mwifiex_sdio mmc0:0001:1: last_cmd_resp_id: df 80 28 80 16 80 cd

80 1e 80

[328.015874] mwifiex_sdio mmc0:0001:1: last_event_index = 1

[328.021326] mwifiex_sdio mmc0:0001:1: last_event: 00 00 0b 00 00 00 00 00 00

00

[328.028643] mwifiex_sdio mmc0:0001:1: data_sent=1 cmd_sent=1

[328.034285] mwifiex_sdio mmc0:0001:1: ps_mode=0 ps_state=0

[328.043571] mwifiex_sdio mmc0:0001:1: info: _mwifiex_fw_dpc: unregister

device

No pull-up on /RF_RESET line
This means that every time the SoC resets, the RF part also resets. A hardware pull-
up prevents this when the GPIOs go tristate during reset

Ethernet port LEDs are ~ bright ~
Should be increased from 330Ω, they’re a little on the bright side. 1k is probably
fine, as they needn’t be super bright

This page collects some notes about the host-driven RF firmware, running on the EFR32FG23 chip
on the board.

RAIL initialization fails with custom build system
This is because a LDMA transfer is set up, but something gets wonky with the
initialization and the destination address mode is set to decrement.
Most likely caused due to an ABI mismatch between the compiled RAIL library, and
our code (or some headers?) compiled for the drivers, specifically the LDMA driver;
current workaround is to monkeypatch the LDMA driver to never set the direction
bits (thus completely ignoring the "broken" transfer struct)

Temperature sensor driver has cast to double
In TEMPDRV_GetTemp() , the 0.5 constant needs to have a f suffix to make it float,
rather than double to compile with the enhanced warnings about upcasts

Host irq system is busted
There should be a separate “irq acknowledge” register, instead of making the
interrupt levels be dependent on doing some action
Currently there’s a possible race between an irq handler and a packet receive, which
wedges irq’s

Firmware Notes

https://github.com/tristanseifert/blazenet-device-fw/tree/main/host-radio

Some notes about the Linux host firmware (see this GitHub repo).

UARTs don't work in DMA mode
All UARTs (including the high speed RF TTY/serial spew) can only operate in interrupt
driven mode. This is pretty inefficient

GPIO IRQs don't work
Kernel drivers (such as buttons) fail to get external interrupts
Buttons need to be operated in polling mode

Host Firmware Notes

https://github.com/tristanseifert/meta-blazenet

